Abstract
BackgroundThe Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. Little is known about the population structure and genetic differentiation of native Ae. albopictus in China. The aim of this study was to examine the patterns of the spatial genetic structures of native Ae. albopictus populations, and their relationship to dengue incidence, on a large geographical scale.MethodsDuring 2016–2018, adult female Ae. albopictus mosquitoes were collected by human landing catch (HLC) or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to examine the patterns of genetic diversity, population structure, and gene flow among native Ae. albopictus populations. The correlation between population genetic indices and dengue incidence was also examined.ResultsA total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.245, P = 0.01). STRUCTURE analysis, PCoA and GLS interpolation analysis indicated that Ae. albopictus populations in China were regionally clustered. Gene flow and relatedness estimates were generally high between populations. We observed no correlation between population genetic indices of microsatellite loci in Ae. albopictus populations and dengue incidence.ConclusionStrong gene flow probably assisted by human activities inhibited population differentiation and promoted genetic diversity among populations of Ae. albopictus. This may represent a potential risk of rapid spread of mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of vector-borne diseases.
Highlights
The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses
Local dengue surveillance data from the 19 provinces during 2011–2015 were obtained from the Cryptic species identification and Wolbachia infection Aedes albopictus cryptic species identification was performed by DNA sequencing of the mitochondrial gene cytochrome c oxidase subunit 1 for the samples collected in Guangxi Province, where the cryptic species have been detected previously [31]
Microsatellite analysis of genetic variability and diversity Genotypes at 13 microsatellite loci were determined for 1023 Ae. albopictus specimens collected in 34 locations
Summary
The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Aedes albopictus and Ae. aegypti are two important vector species responsible for dengue transmission in China. Aedes albopictus is the most predominant species and has been found in nearly one third of China [14] This species has a wide range of distribution from north of 41°N latitude to the southern reaches of the country, while the distribution of Ae. aegypti is limited to small areas of southern China, including Hainan, Guangdong, Guangxi and Yunnan provinces [15, 16]. Aedes albopictus has been reported to be the sole mosquito vector for dengue transmission in Guangzhou, with no presence of Ae. aegypti identified over the past three decades [19]. Dispersal monitoring, and control play an important role in controlling outbreaks [22]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.