Abstract

The sex ratios of the offspring of males from broods of honmoroko Gnathopogon caerulescens that displayed thermolabile sex determination (TSD), and those from eggs collected from the wild, strongly suggest that the combination of parents plays an important supplementary role in TSD in this species. The proportion of females in all broods from eight pairings of fish captured in the field decreased significantly at 30°C compared to 20°C, and one brood was entirely female at the lower temperature. These results suggest that phenotypic males (XX-males) exist in nature, probably as a result of sex change from genetic females caused by TSD. Sex ratios in relation to water temperature fall into five patterns, two of which seem to result from normal pairings of XX-females and XY-males, and from pairings of XX-males and XX-females with non-thermosensitivity. Two other patterns are thought to result from the same types of pairing, but with thermosensitivity. The last pattern, which shows male bias at both low and high temperature, is not explained only by the combination of genotypic sex determination (XX/XY) and TSD. Fluctuating temperatures close to natural conditions showed little potential to masculinize broods laid in the field between April and early June. However, the sex ratios of fish spawned in early June showed male bias at low and high temperatures. The sex determination mechanism in G. caerulescens may involve the interaction between temperature and sex-determining genetic factors, and the relative importance of each component differs with breeding season.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call