Abstract

To better understand invasion dynamics, it is essential to determine the influence of genetics and ecology in species persistence in both native and nonnative habitats. One approach is to assess patterns of selection on floral and growth traits of individuals in both habitats. Mimulus guttatus (Phrymaceae) has a mixed mating system and grows under variable water conditions across its native and nonnative range in North America. Field investigations of patterns of selection of floral and plant size traits were conducted in two native and two nonnative populations. Field-collected seed was grown and crossed in the glasshouse using a paternal half-sib design. The resulting offspring were grown in saturated and dry-down low-water conditions and the same traits were measured in both environments. Patterns of selection varied across years in the native range. Nonnative populations exhibited selection for increased floral size, consistent with the hypothesis that selection favors larger size in nonnative habitats. In the glasshouse, we detected genetic variation for traits across population/treatment combinations. However, size hierarchy in the glasshouse was dependent on water conditions. Our results suggest that both variable selection pressures and local adaptation probably influence the persistence of both native and nonnative populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call