Abstract

Accumulation of reactive oxygen species (ROS) in the stigma of several plant species has been investigated. Four developmental stages (unopened flower buds, recently opened flowers, dehiscent anthers, and flowers after fertilization) were analyzed by confocal laser scanning microscopy using the ROS-specific probe DCFH2-DA. In all plants scrutinized, the presence of ROS in the stigmas was detected at higher levels during those developmental phases considered “receptive” to pollen interaction. In addition, these molecules were also present at early (unopened flower) or later (post-fertilization) stages, by following differential patterns depending on the different species. The biological significance of the presence ROS may differ between these stages, including defense functions, signaling and senescence. Pollen-stigma signaling is likely involved in the different mechanisms of self-incompatibility in these plants. The study also register a general decrease in the presence of ROS in the stigmas upon pollination, when NO is supposedly produced in an active manner by pollen grains. Finally, the distribution of ROS in primitive Angiosperms of the genus Magnolia was determined. The production of such chemical species in these plants was several orders of magnitude higher than in the remaining species evoking a massive displacement toward the defense function. This might indicate that signaling functions of ROS/NO in the stigma evolved later, as fine tune likely involved in specialized interactions like self-incompatibility.

Highlights

  • The term reactive oxygen species (ROS) defines molecules derived from the metabolism of oxygen such as hydrogen peroxide or superoxide radical

  • Differences in the flower developmental patters of the selected species were in many cases obvious (Figure 1A), a selection of similar stages was made based in the criteria described

  • Stage 4 was characterized for anther dehiscence, with numerous pollen grains present on the stigma surface, whereas stage 5 corresponded to flowers already pollinized, displaying fallen corollas or degeneration of petals

Read more

Summary

Introduction

The term reactive oxygen species (ROS) defines molecules derived from the metabolism of oxygen such as hydrogen peroxide or superoxide radical. The presence of ROS and RNS must be balanced to maintain the correct cellular functions. When they are present in high concentrations, they may cause damage to the cell or even cell death. The role of the antioxidants is very important, in order to keep the correct balance of these species. The study of both ROS and RNS in the Reproductive Biology of plants is an emerging discipline. These molecules are able to modulate and control the complex signaling cascades regulating the pollen–pistil interactions in Angiosperms.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call