Abstract

Regional variation in the vertebral column of several species of salamanders (families Ambystomatidae, Salamandridae and Plethodontidae) is analyzed. Measurements of three dimensions, centrum length, prezygapophyseal width, and transverse process length, provide the data. Ontogenetic, interspecific, intergeneric and interfamilial patterns of positional variation are diagrammed and discussed. Distinctive patterns of variation characterize the families, genera, and to a lesser extent, the species. The patterns of ambystomatid salamanders are the most generalized, and probably reflect derivation from a primitive ancestral stock. The most specialized conditions occur in the fully terrestrial plethodontids, a group generally considered to be highly derived. Data such as those presented here will aid in the identification of fossils. The patterns described have functional significance. For example, species which have an aquatic larval stage and which return to aquatic breeding sites have vertebrae which taper in length and width behind the pelvis. This is a feature associated with production of a traveling wave in the tail which is necessary for propulsion in water. Fully terrestrial species do not have a tapering column. In them, standing waves, such as occur in the trunk region of all species, typically occur in the tail. The caudal vertebrae of terrestrial species are rather uniform in dimensions for some distance, and the tail is cylindrical in form. Other functionally important features include the narrowing and shortening of some anterior vertebrae, associated with the development of a neck in some species with tongue feeding mechanisms. In contrast, species which use their heads as wedges during locomotion have broadened anterior vertebrae which serve as sites of origin for hypertrophied neck muscles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call