Abstract

Abstract Exposure of the moderately halophilic bacterium, Deleya halophila, to high NaCl concentrations (2 or 2.5 M) resulted in a transient cessation of cell division. The time taken for the cells to adapt and grow depended on the final salt concentrations. During the initial phases of adaption to high salt both the rate of protein synthesis and amino acid uptake were transiently inhibited. The extent and duration of the inhibition was dependent on the magnitude of the salt shock. Alterations in the patterns of pulse-labelled proteins were observed during adaption to high salt. The response of Deleya halophila cells to decreasing salinity (2.5 to 1 M NaCl) was also characterized by distinct changes in the protein profiles, whereas minor changes in the protein patterns were observed during adaptation from 1 M to 0.5 M NaCl. The labelled protein patterns of cells grown in 1 M or 2.5 M NaCl appear to be similar but not identical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.