Abstract

This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

Highlights

  • Due to their small body size, large population sizes, high rates of predominantly asexual reproduction and their open and seemingly homogenous pelagic habitat, aquatic microorganisms have been critically discussed to possess more or less cosmopolitan distributions and do not show biogeographies as found in macroorganisms [1]

  • By analyzing internal transcribed spacer (ITS) and 5.8S rDNA sequences and amplified fragment length polymorphism (AFLP) data of 84 isolates from 5 geographically separated bloom locations in the Baltic Sea and comparing them with data obtained from global isolates, we here address the following overarching question: Do metapopulations of marine protist species exhibit similar diversity profiles as metazoans in the Baltic Sea and to what extent is this due to Baltic Sea particularities? we investigate 1) the degree of genetic divergence of Baltic A. ostenfeldii populations from neighboring North Atlantic and other global populations of this species and 2) the genetic structure and patterns of genetic diversity of this species among and within its populations in the Baltic Sea

  • All other A. ostenfeldii/peruvianum isolates fell into another, highly complex cluster that was further subdivided into several clades: one comprising strains belonging to the A. peruvianum morphotype, and the other containing groups of strains from the West Atlantic, East Atlantic and the Tasman Sea

Read more

Summary

Introduction

Due to their small body size, large population sizes, high rates of predominantly asexual reproduction and their open and seemingly homogenous pelagic habitat, aquatic microorganisms have been critically discussed to possess more or less cosmopolitan distributions and do not show biogeographies as found in macroorganisms [1]. Molecular data indicate that the distribution patterns of aquatic microorganisms reflect historical, ecological and local conditions [2] and that most species should be considered systems of genetically structured components, metapopulations, rather than single panmictic populations [3]. Recent work on the genetic structure of eukaryotic microalgae revealed that most of the investigated species are highly structured at and below the population level [4,5,6]. Such evidence of genetic diversity and differentiation indicates that the general mechanisms affecting gene flow and facilitating adaptive divergence are effective in these organisms. Microalgal diversity patterns have been related to geographic distance and isolation [7], landscape or seascape topography and current systems [8], environmental gradients [9,10], as well as reproduction and life cycle strategies [11,12,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call