Abstract

Current U.S. recommendations for breast cancer screening of women with at least a 20%-25% lifetime risk of developing breast cancer include contrast material-enhanced magnetic resonance (MR) imaging of the breasts. The cancer detection rate in high-risk women undergoing screening MR imaging is approximately 10 times higher than that in normal-risk women undergoing screening mammography. Many of these high-risk women commence MR imaging screening while they are premenopausal, when the breasts are most influenced by cyclical hormonal changes. Healthy premenopausal breast tissue enhances in a cyclical and variable manner. This enhancement is described as background enhancement. Typically, enhancement of normal breast tissue occurs in a symmetric and diffuse pattern, and there is little diagnostic difficulty in classifying it as normal background parenchymal enhancement. However, sometimes the pattern is more focal, asymmetric, or regional. It may then be described as nonmasslike enhancement, an observation associated with both benign and malignant breast pathologic conditions. A review of the morphologic features and internal enhancement patterns in normal but nondiffuse background enhancement and abnormal nonmasslike enhancement in high-risk premenopausal women can help improve interpretive specificity and decrease false-positive interpretations. MR imaging pitfalls and interpretation strategies for localized background enhancement and pathologic nonmasslike enhancement in this high-risk population are highlighted. In evaluating nonmasslike enhancement, the use of the Breast Imaging Reporting and Data System (BI-RADS) lexicon to perform careful analysis of morphologic features, along with an understanding of the role and limitations of kinetic information, will help balance early breast cancer detection against false-positive interpretation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.