Abstract

PurposeThe aim of this study was to compare the pattern of intra-patient spread of lymph-node (LN)-metastases within the mediastinum as assessed by 18F-FDG PET/CT and systematic endobronchial ultrasound-guided transbronchial-needle aspiration (EBUS-TBNA) for precise target volume definition in stage III NSCLC.MethodsThis is a single-center study based on our preceding investigation, including all consecutive patients with initial diagnosis of stage IIIA-C NSCLC, receiving concurrent radiochemotherapy (12/2011–06/2018). Inclusion criteria were curative treatment intent, 18F-FDG PET/CT and EBUS-TBNA prior to start of treatment. The lymphatic drainage was classified into echelon-1 (ipsilateral hilum), echelon-2 (ipsilateral LN-stations 4 and 7) and echelon-3 (rest of the mediastinum, contralateral hilum). The pattern of spread was classified according to all permutations of echelon-1, echelon-2, and echelon-3 EBUS-TBNA findings.ResultsIn total, 180 patients were enrolled. Various patterns of LN-spread could be identified. Skip lesions with an involved echelon distal from an uninvolved one were detected in less than 10% of patients by both EBUS-TBNA and PET. The pattern with largest asymmetry was detected in cases with EBUS-TBNA- or PET-positivity at all three echelons (p < 0.0001, exact symmetry test). In a multivariable logistic model for EBUS-positivity at echelon-3, prognostic factors were PET-positivity at echelon-3 (Hazard ratio (HR) = 12.1; 95%-CI: 3.2–46.5), EBUS-TBNA positivity at echelon-2 (HR = 6.7; 95%-CI: 1.31–31.2) and left-sided tumor location (HR = 4.0; 95%-CI: 1.24–13.2). There were significantly less combined ipsilateral upper (LN-stations 2 and 4) and lower (LN-station 7) mediastinal involvements (16.8% of patients) with EBUS-TBNA than with PET (38.9%, p < 0.0001, exact symmetry test). EBUS-TBNA detected a lobe specific heterogeneity between the odds ratios of LN-positivity in the upper versus lower mediastinum (p = 0.0021, Breslow-Day test), while PET did not (p = 0.19).ConclusionFrequent patterns of LN-metastatic spread could be defined by EBUS-TBNA and PET and discrepancies in the pattern were seen between both methods. EBUS-TBNA showed more lobe and tumor laterality specific patterns of LN-metastases than PET and skipped lymph node stations were rare. These systematic relations offer the opportunity to further refine multi-parameter risk of LN-involvement models for target volume delineation based on pattern of spread by EBUS-TBNA and PET.

Highlights

  • Precise detection of the loco-regional pattern of tumor spread is of utmost importance for delineating the radiation target volume

  • Guberina et al Radiat Oncol (2021) 16:176 opportunity to further refine multi-parameter risk of lymph nodes (LN)-involvement models for target volume delineation based on pattern of spread by EBUS-TBNA and PET

  • In our preceding per lymph node analysis at this institution’s lung cancer database, we found a rising false discovery rate (FDR) of 18F-FDG PET/CT from echelon-1, to echelon-2 and -3 lymph nodes in patients with locally advanced non-small cell lung cancer (NSCLC), treated with neoadjuvant or definitive radiochemotherapy [9]

Read more

Summary

Introduction

Precise detection of the loco-regional pattern of tumor spread is of utmost importance for delineating the radiation target volume. Evidence from older randomized trials with 18F-FDG PET-scans did not show a higher effectiveness of radiotherapy including elective nodal irradiation over involved field radiotherapy alone in locally advanced non-small cell lung cancer (NSCLC) [1, 2]. Staging in these trials did not meet current standards and only a minority of patients received a pretreatment 18F-FDG PET/CT. First the PET-plan trial was able to confirm the noninferiority of involved field lymph node irradiation compared to a conventional target group including limited elective nodal irradiation at the primary endpoint of locoregional progression [3]. The gross tumor volume (GTV) includes PET-positive lymph nodes (LN) that will be expanded by 5–8 mm or up to an anatomic boundary to yield the clinical target volume (CTV) [4, 5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call