Abstract

This study compared self-induced stepping reactions of seventeen participants after stroke and seventeen controls. Surface electromyographic (EMG) signals were recorded bilaterally from the soleus (SOL), tibialis anterior (TA), biceps femoris (BF) and rectus femoris (RF) muscles. Principal component analysis (PCA) was used to reduce the data into muscle activation patterns and examine group differences (paretic, non-paretic, control leg). The first principal component (PC1) explained 46.7% of the EMG signal of the stepping leg. Two PCs revealed distinct activation features for the stepping paretic leg: earlier TA onset at step initiation and earlier BF and SOL onset at mid-step. For the stance leg, PC1 explained 44.4% of the EMG signal and significant differences were found in the non-paretic leg compared to paretic (p<0.001) and control (p<0.001). In PC1, at step onset the BF and SOL EMG and the RF and TA EMG were increased over the latter half of the step. No PC loadings were distinct for the paretic leg during stance, however differences were found in the non-paretic leg: earlier TA burst and increased BF and SOL EMG at step initiation. The results suggest impairments in the paretic leg when stepping and compensatory strategies in the non-paretic stance leg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call