Abstract
Secondary contacts can play a major role in the evolutionary histories of species. Various taxa diverge in allopatry and later on come into secondary contact during range expansions. When they meet, their interactions and the extent of gene flow depend on the level of their ecological differentiation and the strength of their reproductive isolation. In this study, we present the multilocus phylogeography of two cryptic whiskered bat species, Myotis mystacinus and M. davidii, with a particular focus on their putative sympatric zone. Our findings suggest that M. mystacinus and M. davidii evolved in allopatry and came into secondary contact during range expansions. Individuals in the area of secondary contact, in Anatolia and the Balkans, have discordant population assignments based on the mitochondrial and the nuclear datasets. These observed patterns suggest that the local M. mystacinus populations hybridized with expanding M. davidii populations, which resulted in mitochondrial introgression from the former. In the introgression area, M. mystacinus individuals with concordant nuclear and mitochondrial genotypes were identified in relatively few locations, suggesting that the indigenous populations might have been largely replaced by invading M. davidii. Changing environmental conditions coupled with ecological competition is the likely reason for this replacement. Our study presents one possible example of a historical population replacement that was captured in phylogeographic patterns.
Highlights
Geographic distribution of species is complex expression of their ecology and evolutionary histories
We refer to this lineage as the Clade M, which includes the M. mystacinus individuals from western Europe; in this area, M. mystacinus is allopatric from its sister species, M. davidii
We identified genetically distinct clusters both in mtDNA and nuclear DNA (nuDNA)
Summary
Geographic distribution of species is complex expression of their ecology and evolutionary histories If taxa ecologically differentiated during their time in isolation, they would be able to extend their ranges with minimal competition, eventually forming overlapping distributions. As the time since speciation increases, the range expansions of sister species are more likely to lead to sympatry This suggests that ecological competition is one of the major factors that shape the distribution patterns of related species
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.