Abstract

Adenosine triphosphate (ATP) measurements are used to determine vertical and seasonal distributions of microorganisms and meiofauna in sediments from a 14 m-deep mud bottom in central Long Island Sound on 12 sampling dates from April 1975 to October 1976. Below the topmost 1 cm of sediment, ATP measurements can be useful in estimating and comparing standing stocks of microorganisms and meiofauna. In the top 1 cm, however, large quantities of newly settled bivalves (Yoldia limatula, Nucula annulata, and Mulinia lateralis) and juvenile polychaetes (Owenia fusiformis) in summer and fall months account for total ATP concentrations. The ATP content of individual meiofauna ranges from 1.97 ng individual copepod nauplius-1 to 190.7±60 ng individual M. lateralis-1. In general, the total ATP content of individual polychaetes and bivalves is much higher than that of individuals of other groups. However, on a mg ATP per g wet or dry tissue basis, the ATP content of micro- and meiofaunal taxa are not significantly different. In addition to providing a means for comparing micro- and meiofaunal standing stocks, ATP measurements permit examination of the relative contribution of different meiofauna to the total living biomass of meiofauna in sediments. Total sediment ATP concentrations are greatest in the top 1 cm at all seasons, and decrease with increasing depth in the sediment. Annual concentrations in the topmost centimeter average 4.22 μg g dry sediment-1 and range seasonally from 1.09 to 7.64 μg g dry sediment-1. At a depth of 10 cm, values average 0.16 and range from 0.019 to 0.35 μg g dry sediment-1. High ATP concentrations in surface sediment reflect high concentrations of microorganisms and meiofauna at the sediment-water interface. The top 2 cm of sediment contain 71% of all meiofauna, with 41% occurring in the topmost cm. In general, densities are lowest in the winter and highest during the spring and summer, averaging 490 individuals 10 cm-2, and varying from 87 to 1366 individuals 10 cm-2. Because of wide variation in recruitment patterns of the benthos in Long Island Sound, the extremes of the range in meiofaunal densities can be observed in the same month in two different years. In order to monitor and compare standing stocks of organisms less than 1 mm in size in sediments, the ATP assay can save hours of processing time compared with alternate methods such as direct counts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call