Abstract

This study analyses the complicated patterns of vertical distribution of the macroalgal vegetation in an area where brackish and marine waters meet and mix. Variables used to record vegetation characteristics are algal cover, species composition and diversity. The data set includes 64 diving profiles, all from sites exposed to wave action, along a ca. 260 km long coastline. The profiles belong to four categories: coastal sites in the Skagerrak (more marine), coastal sites in the Kattegat (more brackish), coastal sites in the Kattegat after a toxic phytoplankton bloom, and submerged offshore stone reefs in the Kattegat. The highest species diversity was found at the reefs, which are not affected directly by land runoff. At the reefs the 18 most common perennial species penetrate 2–11 m (on average 5.5 m) deeper than at the coastal sites. The virtual absence of sedimentation, and thus the availability of substratum, at the reefs may explain the differences so that the lower limit for the algae is determined by light penetration or by recruitment problems caused by strong currents at the reefs, whereas sedimentation limits the settlement of algae in coastal sites. Ordination analysis based on species composition reveals that the major environmental gradients structuring the algal vegetation in the Kattegat and the Skagerrak are salinity and water depth. The large data set of this study made it possible to quantify the downward dislocation of Atlantic intertidal species to the sublittoral along the Swedish west coast. For example, the mean upper limit of Corallina officinalis is 2 m in the Skagerrak but 12.5 m in the Kattegat and the mean occurrence interval of Fucus serratus is 0.9–2.7 m in the Skagerrak, but 1.1–6.3 m in the Kattegat. This downward dislocation is suggested to be the result of decreased competition when species successively disappear with lower salinity. Comparisons of the present study's results with those of previous investigations show that eight common red algal species have moved upwards compared to the situation before the large-scale eutrophication started in the 1960s, e.g. Cystoclonium purpureum and Polysiphonia elongata by ca. 8 m, Phycodrys rubens and Delesseria sanguinea by ca. 5 m. A toxic phytoplankton bloom affected macroalgal community composition on the whole only slightly, but it had a negative effect on algal cover and species richness below a water depth of ca. 5 m, the algae were visibly damaged and the lower vegetation limit temporarily moved upwards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call