Abstract

We study time evolution of Schrodinger-Newton system using the self-consistent Crank-Nicolson method to understand the dynamical characteristics of nonlinear systems. Compactifying the radial coordinate by a new one, which brings the spatial infinity to a finite value, we are able to impose the boundary condition at infinity allowing for a numerically exact treatment of the Schrodinger-Newton equation. We study patterns of gravitational cooling starting from exponentially localized initial states. When the gravitational attraction is strong enough, we find that a small-sized oscillatory solitonic core is forming quickly, which is surrounded by a growing number of temporary halo states. In addition a significant fraction of particles escape to asymptotic regions. The system eventually settles down to a stable solitonic core state while all the excess kinetic energy is carried away by the escaping particles, which is a phenomenon of gravitational cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.