Abstract

The adult sea urchin central nervous system (CNS) is composed of five radial nerve cords connected to a circular nerve ring. Although much is known about the molecular mechanisms underlying the development and function of the nervous systems of many invertebrate and vertebrate species, virtually nothing is known about these processes in echinoderms. We have isolated a set of clones from a size-selected cDNA library prepared from the nervous system of the sea urchin Heliocidaris erythrogramma for use as probes. A total of 117 expressed sequence clones were used to search the GenBank database. Identified messages include genes that encode signaling proteins, cytoskeletal elements, cell surface proteins and receptors, cell proliferation and differentiation factors, transport and channel proteins, and a RNA DEAD box helicase. Expression was analyzed by RNA gel blot hybridization to document expression through development. Many of the genes have apparently neural limited expression and function, but some have been co-opted into new roles, notably associated with exocytotic events at fertilization. Localization of gene expression by whole-mount in situ hybridization shows that the morphologically simple sea urchin radial CNS exhibits complex organization into localized transcriptional domains. The transcription patterns reflect the morphological pentamery of the echinoderm CNS and provide no indication of an underlying functional bilateral symmetry in the CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call