Abstract

Restoring the structural characteristics of secondary old-growth forests that were previously managed is increasingly debated to help increase the area of more complex forests which provide a broader array of forest services and functions. The paucity of long-term data sets in Central Europe has limited our ability to understand the ongoing ecological processes required for effective restoration programs for old-growth forests. To address this, we used repeated census data from eight permanent plots to evaluate forest structural dynamics over a 12-year period in the largest complex of European beech (Fagus sylvatica L.) forests in the Czech Highlands without intensive forestry intervention for almost 50 years. Our results showed that previously managed forests can exhibit structural qualities typically associated with old-growth forests after management has ceased for a period. The stand structural characteristics (e.g., density of large and old trees) is comparable with protected reserves of old-growth European beech-dominated forests. The average stand age was 196 years, but the oldest tree was 289 years old. The annual mortality rate was 0.43% for all species, and the U-shaped distribution indicating size-dependent mortality is likely an important process that is balanced by the turnover of new tree recruitment. During the study period, we detected that the diameter distribution tended towards a rotated sigmoid distribution. The lasting effects of the most recent forest management are evident in the scarcity of dead wood, and a prolonged process of dead wood accumulation has begun. Thus, the abandonment of all management activities in near-natural forest reserves, including dead wood removal, will ensure that the forests will develop characteristics typical of old-growth forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call