Abstract

Fire is one of the most important processes driving plant community composition and structure. Fire regimes are largely governed by climate, vegetation structure, and individual plant traits that influence flammability. We assessed the mechanistic drivers of flammability for a diverse group of 18 California Quercus and allied Chrysolepis and Notholithocarpus species, addressing variation in leaf physical traits, growth form (tree or shrub), phylogeny (Quercus subgenera), and fire regime (low, mixed, or high severity). Differences in flammability were not strongly driven by leaf habit, leaf margin type, or surface area to volume ratio; simple measures of leaf size accounted for most of the observed variation. Further, leaf size was tightly linked to fuelbed depth, a known driver of fire behavior. Litter from trees was generally more flammable than litter from shrubs, primarily a function of differences in leaf size. A hierarchical clustering analysis on the flammability data set divided the oaks into three clusters of low, intermediate, and high flammability, corresponding closely to high-, mixed-, and low-severity fire regimes, respectively. The link between plant flammability traits and fire regime provides further evidence that individual species affect ecosystem processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call