Abstract

BackgroundBovine fasciolosis is an economically important livestock disease in Europe, and represents a particular challenge for organic farms, where cattle are grazed extensively and the use of anthelmintic is limited. A two-year longitudinal study was conducted on two conventional and two organic Danish dairy farms to examine the current temporal trend of F. hepatica infection on-farm, and to gather data of practical relevance for parasite control. Data were collected both at the herd and individual level using currently available diagnostic methods: a commercial serum antibody ELISA, a commercial copro-antigen ELISA, faecal egg counts, and monthly bulk tank milk (BTM) ELISA. The temporal patterns (animal age, farm-level temporal trends and seasonality) in the animal-level test results were analysed by generalised additive mixed models (GAMM).ResultsPatterns of infection differed substantially between the farms, due to different grazing management and anthelmintic use. However, animals were first infected at the age of 1.5–2 years (heifers), and most at-risk animals sero-converted in autumn, suggesting that summer infections in snails prevail in Denmark. Our results also suggest that the lifespan of the parasite could be over 2 years, as several cows showed signs of low grade infection even after several years of continuous indoor housing without access to freshly-cut grass. The serum antibody ELISA was able to detect infection first, whereas both copro-antigen ELISA and faecal egg counts tended to increase in the same animals at a later point. Decreasing BTM antibody levels were seen on the two farms that started anthelmintic treatment during the study.ConclusionsWhile important differences between farms and over time were seen due to varying grazing management, anthelmintic treatment and climatic conditions, the young stock was consistently seen as the main high-risk group and at least one farm also had suspected transmission (re-infection) within the lactating herd. Careful interpretation of test results is necessary for older cows as they can show persistent infections several years after exposure has stopped. Rigorous treatment regimens can reduce BTM ELISA values, but further research is needed to develop a non-medicinal approach for sustainable management of bovine fasciolosis.

Highlights

  • Bovine fasciolosis is an economically important livestock disease in Europe, and represents a particular challenge for organic farms, where cattle are grazed extensively and the use of anthelmintic is limited

  • Despite these differences, there was a similar association between animal age and F. hepatica diagnosis across the four farms; infection tended to be acquired as young stock, not necessarily in the first grazing season

  • The detailed diagnosis of individual animals may need to be repeated in order to reduce the impact of year-to-year variation within the same farm. This longitudinal study on four dairy farms in Denmark showed that the patterns of F. hepatica infection varied considerably between farms due to different grazing management and anthelmintic strategies employed

Read more

Summary

Introduction

Bovine fasciolosis is an economically important livestock disease in Europe, and represents a particular challenge for organic farms, where cattle are grazed extensively and the use of anthelmintic is limited. A two-year longitudinal study was conducted on two conventional and two organic Danish dairy farms to examine the current temporal trend of F. hepatica infection on-farm, and to gather data of practical relevance for parasite control Data were collected both at the herd and individual level using currently available diagnostic methods: a commercial serum antibody ELISA, a commercial copro-antigen ELISA, faecal egg counts, and monthly bulk tank milk (BTM) ELISA. To successfully control fasciolosis on a dairy farm, it is crucial to identify which pasture is the source of infection This is most often achieved by taking samples from representative groups of animals in different age groups grazing identified pastures, and analysing them either by faecal egg counts or by ELISA to detect antibodies in serum or milk, depending on which age group is tested [5]. Identification of snail habitats and intermediate host snails, is an important part of on-farm fasciolosis control, the procedure can be time-consuming and requires specialized taxonomical skills or molecular tools to correctly identify the G. truncatula snails [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call