Abstract

Black poplar (Populus nigra L.) is an economically and ecologically important tree species and an ideal organism for studies of genetic variation. In the present work, we use a candidate gene approach to infer the patterns of DNA variation in natural populations of this species. A total of 312 single nucleotide polymorphisms (SNPs) are found among 8,056 bp sequenced from nine drought-adaptation and photosynthesis-related gene loci. The median SNP frequency is one site per 26 bp. The average nucleotide diversity is calculated to be theta(W) = 0.01074 and pi(T) = 0.00702, higher values than those observed in P. tremula, P. trichocarpa and most conifer species. Tests of neutrality for each gene reveal a general excess of low-frequency mutations, a greater number of haplotypes than expected and an excess of high-frequency derived variants in P. nigra, which is consistent with previous findings that genetic hitchhiking has occurred in this species. Linkage disequilibrium is low, decaying rapidly from 0.45 to 0.20 or less within a distance of 300 bp, although the declines of r(2) are variable among different loci. This is similar to the rate of decay reported in most other tree species. Our dataset is expected to enhance understanding of how evolutionary forces shape genetic variation, and it will contribute to molecular breeding in black poplar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.