Abstract

ABSTRACTAim General patterns of biodiversity, such as latitudinal gradients and species‐area relationships, are found consistently in a wide range of organisms, but recent results for protist diversity suggest that organisms shorter than 2 mm do not display such patterns. We tested this prediction in bdelloid rotifers, pluricellular metazoans smaller than 2 mm, but with size and ecology comparable to protists.Location A single valley in northern Italy was surveyed in detail and compared to all available faunistic data on bdelloids worldwide.Methods We analysed 171 local assemblages of bdelloid rotifers living in 5 systems of dry mosses and submerged mosses in running water and in lakes. We compared patterns of alpha, beta, and gamma diversity, and nestedness of metacommunities, with those known from protists and larger organisms.Results Bdelloid rotifers showed low local species richness (alpha diversity), with strong habitat selection, as observed in larger organisms. The number of species differed among systems, with a higher number of species in dry than in aquatic mosses. There was no hierarchical structure or exclusion of species in the metacommunity pattern within each system. Local diversity for the entire valley was surprisingly high compared with worldwide bdelloid diversity, similar to observed patterns in protists.Main Conclusions Bdelloid rotifers have some of the peculiarities of protist biodiversity, although at slightly different spatial scales, thus confirming the idea of a major change in biodiversity patterns among organisms shorter than 2 mm. However, bdelloids show stronger habitat selection than protists. We suggest two possible explanations for the observed patterns: (1) dispersal is very rare, and not all bdelloid clones are arriving everywhere; and (2) dispersal is effective in displacing propagules, but environmental heterogeneity is very high and prevents many species from colonizing a given patch of moss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.