Abstract

Abstract The present study offers a broad comparative analysis of the dorsolateral head musculature in the Gymnotiformes, with detailed descriptions and illustrations of the dorsolateral head muscles of 83 species representing combined all valid genera. Results permit a detailed assessment of primary homologies and taxonomically-relevant variation across the order. This provides the basis for a myological synonymy, which organizes 33 previously proposed names for 15 recognized muscles. Morphological variation derived from dorsolateral head musculature was coded into 56 characters. When analyzed in isolation, that set of characters results in Gymnotidae as the sister group of remaining gymnotiforms, and all other currently recognized families as monophyletic groups. In a second analysis, myological characters were concatenated with other previously proposed characters into a phenotypic matrix. Results of that analysis reveal new myological synapomorphies for nearly all taxonomic categories within Gymnotiformes. A Partitioned Bremer Support (PBS) was used to asses the significance of comparative myology in elucidating phylogenetic relationships. PBS values show strongly non-uniform distributions on the tree, with positive scores skewed towards more inclusive taxa, and negative PBS values concentrated on less inclusive clades. Our results provide background for future studies on biomechanical constraints evolved in the early stages of gymnotiform evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.