Abstract

ABSTRACTThe clonal mat‐forming fern, Dicranopteris linearis (N. L. Burm.) Underw., dominates vast areas of rainforests on the windward slopes of Mauna Loa Volcano on the island of Hawai'i. Because clone size has important ecological and evolutionary consequences in such a dominant species, we used isozyme analysis to investigate clone size and other aspects of genetic diversity and reproduction over a broad range of environmental conditions on primary successional sites (pahoehoe lava substrates).Isozyme analysis provided a measure of the upper limit of clonal size in this interdigitating clonal species. Each 0.5‐ha primary successional site on Mauna Loa was comprised of a minimum of two to four clones. Genetic diversity in Dicranopteris was low; of 32 putative loci investigated, only 4 were polymorphic, with 2 or 3 alleles/locus. Over the 17 study locations on Mauna Loa and Kilauea Volcanoes, we identified nine multilocus genotypes based on unique combinations of allozymes. Seven of the nine genotypes were heterozygous for at least one locus, evidence of an intergametophytic mating system. Highly dispersible spores, coupled with intergametophytic mating should promote higher genetic diversity. We propose that the following factors contributed to low genetic diversity: founder effects; extreme isolation from mainland gene pools; high potential for mating among different gametophytes produced from the same sporophyte; relatively low numbers of safe sites for gametophyte establishment over space and time; and long‐term reliance on vegetative growth. Leaf phenotypes were associated with genotype, but also with environmental conditions. Enough variability within a genotype existed to support the current treatment of Hawaiian Dicranopteris as one species.Vegetative growth was the primary means by which Dicranopteris covered the landscape. Nevertheless, spore production, gametophyte establishment, and sexual reproduction were absolutely essential for colonization of the few favorable microsites available on pahoehoe lava substrates of Mauna Loa following lava eruptions, dieback, and similar landscape‐level disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.