Abstract

We study the time it takes until a fluid queue with a finite, but large, holding capacity reaches the overflow point. The queue is fed by an on/off process with a heavy tailed on distribution which is known to have long memory. It turns out that the expected time until overflow, as a function of capacity L, increases only polynomially fast; so overflows happen much more often than in the classical light tailed case, where the expected over-flow time increases as an exponential function of L. Moreover, we show that in the heavy tailed case overflows are basically caused by single huge jobs. An implication is that the usual $GI/G/1$ queue with finite but large holding capacity and heavy tailed service times will overflow about equally often no matter how much we increase the service rate. We also study the time until overflow for queues fed by a superposition of k iid on/off processes with a heavy tailed on distribution, and we show the benefit of pooling the system resources as far as time until overflow is concerned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.