Abstract
There is a large variation in divergence times across genomic regions between human and chimpanzee. It has been suggested that this could partly result from selection against ancestral gene flow between incipient species in regions of the genome containing genetic incompatibilities. It is possible that such barriers to gene flow could arise in specific genes or in chromosomal inversions. I analysed patterns of lineage sorting that occur between human, chimpanzee and gorilla genomic sequences by examining divergent site patterns in > 18 Mb genomic alignments. I develop a method to normalise site patterns by the mutational spectrum to minimise errors caused by misinference caused by recurrent mutation. Here I show that divergence times appear to be uniform between coding and noncoding sequences and between inverted and non-rearranged portions of chromosomes. I therefore find no evidence to support the large-scale accumulation of genetic incompatibilities at speciation genes or chromosomal inversions in the ancestral population of humans and chimpanzees. In addition, site patterns that are discordant with the species tree occur more frequently in regions with high human recombination rates. This could indicate the action of selective sweeps in the ancestral population, but could also be indicative of increased rates of homoplasy in these regions. I argue that these observations are compatible with a neutral allopatric model of speciation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.