Abstract
BackgroundStudies of biological invasions focus on negative interactions between exotic and native biotas, emphasizing niche overlap between species and competitive exclusion. However, the effects of positive interactions and coexistence are poorly known. In this study we evaluate the importance of positive, negative, or random species associations in explaining the coexistence of native and exotic boring polychaetes inhabiting invertebrate hosts, on the southeastern Pacific coast of Chile. We assess three hypotheses to explain the observed patterns: positive species interactions, weak competitive interactions, and competitive intransitivity.MethodologyTo assess the potential effect of competition between native and exotic polychaetes we analyzed patterns of co-occurrence of species pairs in northern and southern regions, using the metric of the probabilistic model. Since biotic interactions can affect not only native species, we also evaluated correlations between native and exotic polychaete abundance, using reduced major axis regression linear models. To assess the transitivity of competitive hierarchies we used metrics and analytical methods based on abundance matrices to estimate species competition and patch transition matrices.ResultsOn average 50% of the species pairs presented significant weak negative associations, all associated with the exotic species Polydora rickettsi; the remaining 50% had random associations, and none showed positive associations. However, the relationship of abundance between native and exotic boring polychates supports a tendency towards coexistence. At local and regional scales, we observed the presence of a transitive network competition structure, where the exotic boring polychaete, P. rickettsi was generally the dominant species.ConclusionsOur results support that native and exotic boring polychaete species coexist through weak competitive interactions. Nevertheless, the large number of random interactions observed indicates that species coexistence can be accounted for by stochastic processes, as proposed by neutral theory. Coexistence may be a frequent result of interactions between native and exotic species, although less apparent than competitive exclusion. Thus, the probabilistic point-of-view used here provides a statistical tool for evaluating coexistence as a result of exotic and native species’ interactions, an idea which has been proposed in invasion ecology, but largely lacks empirical support and methodologies for detecting underlying mechanisms. Finally, we found evidence that P. rickettsi is a successful invader by being competitively dominant, but not excluding other species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.