Abstract
Large fluvial systems adjust to a combination of controls to form distinctive channels, which represent a dominant factor in the evolution of floodplain geomorphology and sedimentology. Fluvial geomorphology has commonly classified river channels into meandering, straight and braiding patterns, which are seen to represent a continuum of channel geometry. Anabranching patterns, rivers with multiple channels, however, are characteristic of many rivers. The identification of a combination of variables that discriminates specific channel patterns has been a significant focus of research in fluvial geomorphology. The development of this body of knowledge, however, has been established from medium and small rivers, and laboratory flume studies. Very few of these research ideas developed from analysis of large fluvial systems. This paper assesses the pattern of channel adjustment of large fluvial systems by employing hydraulic geometry, discharge, w/ d, slope, grain size, stream power, specific stream power, and Froude number ( Q mean > 1000 m 3/s). The study demonstrates that methods currently used to discriminate channel patterns are not useful when applied to very large rivers. Further, with the exception of the Lower Mississippi, alluvial rivers with mean annual discharges greater than ~ 17,000 m 3/s, here classified as mega rivers, do not generate single thread meandering or typical braided patterns. These mega rivers develop anabranching patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.