Abstract

To better understand patterns of fish assemblage composition in Wisconsin streams in relation to major environmental gradients, I carried out multivariate direct gradient analysis (canonical correspondence analysis) of two large independent datasets on fish species abundance in Wisconsin streams. Analysis of the two datasets yielded similar results, suggesting that observed patterns and relationships were real. Stream sites were distributed along fish species-environment gradients, but segregation into distinct stream temperature and geographic groups was also evident. The strongest gradient in both datasets was related to summer water temperature patterns, and encompassed a transition from small, coldwater streams dominated by salmonids, cottids, certain cyprinids, and few other species, to both small and large, warmwater streams dominated by a high diversity of different cyprinids, catostomids, ictalurids, centrarchids, and percids. A second gradient in both datasets was complex but largely geographic. Within it, sites from each of the four ecoregions that occupy Wisconsin formed fairly discrete groups. The strongest differences were between sites in the two southern Wisconsin ecoregions, the Driftless Area and the Southeastern Wisconsin Till Plains, that were dominated by certain cyprinids, ictalurids, and centrarchids, and sites in the two northern Wisconsin ecoregions, the North Central Hardwood Forests and the Northern Lakes and Forests, that were dominated by a different set of cyprinids and ictalurids, plus some petromyzontids, salmonids, catostomids, and percids. Sites from the Driftless Area that were mostly higher-gradient (steep stream slope) and had many riffle-dwelling species could also be distinguished from sites in the Southeastern Wisconsin Till Plains that were mostly lower-gradient and had many pool-dwelling species. The patterns of fish assemblage composition among sites and the associated fish species-environment relationships that were revealed by the analyses provided a framework for developing an ecologically meaningful hierarchical classification of Wisconsin stream sites based on stream thermal regime, ecoregion, stream size, and stream gradient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.