Abstract

Flow in a rectangular basin driven by a surface force is considered. The problem is motivated by flow in geophysical bodies of water driven by wind at the water surface. Results are obtained via numerical computations of the Navier–Stokes equations assuming constant density. The numerical integration is achieved with a splitting method, with Crank–Nicolson for the linear terms, and Adams–Bashforth for the nonlinear terms. Spatial derivatives are treated with finite differences. The forcing has a sinusoidal variation across the top with a sequence of length scales. The results show a symmetric steady stable flow for small Reynolds numbers. As the Reynolds number is increased, the system experiences either a subcritical or supercritical pitchfork bifurcation to an asymmetric steady stable flow, or a local Hopf bifurcation, depending on the aspect ratio of the container and the length scale of the forcing. The asymmetric flow is cellular for forcing length scales commensurate with the depth. For smaller forcing length scales, the asymmetric flow has a basin-filling character at the bottom portion of the basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.