Abstract

AbstractQuantification of small stream contributions to global carbon cycling is key to understanding how freshwater systems transmit and transform carbon between terrestrial and atmospheric pools. To date, greenhouse gas emissions of carbon dioxide and methane from freshwaters, particularly in mountainous regions, remain poorly characterized due to a lack of direct field observations. Using a unique longitudinal approach, we conducted field surveys across two ecoregions (Middle Rockies and Great Plains) in the Clear Creek watershed, a subwatershed of Wyoming's Powder River Basin. We took direct measurements of stream gases using headspace sampling at 30 sites (8 June to 23 October). We observed the lowest and most variable concentrations in headwaters, which flow through a federally designated alpine wilderness area. By contrast, the Great Plains exhibited 1.45 and 4 times higher pCO2 and pCH4 concentrations and the relative contributions of methane increased downstream. Fluxes during snowmelt were 45% and 58% higher for CO2 and CH4 than during base flow but overall were lower than estimates for other systems. Variability for pCO2 was highest during late summer and in the uppermost sections of the headwaters. The high heterogeneity and common undersaturation observed through space and time, especially in the mountains, suggest that downscaled regional estimates may fail to capture variability in fluxes observed at these smaller scales. Based on these results, we strongly recommend higher resolution time series studies and increased scrutiny of systems at near equilibrium, inclusive of winter storage and ice‐off events, to improve our understanding of the effects of seasonal dynamics on these processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.