Abstract

In this paper, we present the theoretical results on the pattern formation of a modified Leslie–Gower diffusive predator–prey system with Beddington–DeAngelis functional response and nonlocal prey competition under Neumann boundary conditions. First, we investigate the local stability of homogeneous steady-state solutions and describe the effect of the nonlocal term on the stability of the positive homogeneous steady-state solution. Lyapunov–Schmidt method is applied to the study of steady-state bifurcation and Hopf bifurcation at the interior of constant steady state. In particular, we investigate the existence, stability and multiplicity of spatially nonhomogeneous steady-state solutions and spatially nonhomogeneous periodic solutions. Furthermore, we present a simple description of the dynamical behaviors of the system around the interaction of steady-state bifurcation curve and Hopf bifurcation curve. Finally, a numerical simulation is provided to show that the nonlocal competition term can destabilize the constant positive steady-state solution and lead to the occurrence of spatially nonhomogeneous steady-state solutions and spatially nonhomogeneous time-periodic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call