Abstract

Recent outbreaks of the European spruce bark beetle (Ips typographus) in Norway spruce (Picea abies) forests in Central Europe highlight the importance of timely detection and sanitation of infested trees for pest management efficacy. This study provides novel quantitative evidence on the manifestation of infestation symptoms and their visual detectability, to guide accelerated, optimized terrestrial bark beetle monitoring, as well as establishing benchmarks for potential alternative (e.g. sensor-based) monitoring approaches. We employed bi-weekly, individual tree-level assessments on 85 hectares of spruce-dominated unmanaged forest over a 2-year period in south-western Germany (detecting a total of 1,176 infested trees). By applying decision tree-type models, we quantified the predictive power of observed symptoms and their correlation with environmental factors and time. Terrestrial detection accuracy and timeliness were high, suggestive of being sufficient to suppress I. typographus outbreak propagation by subsequent sanitation felling. Among the six studied symptoms, boring dust occurred most frequently (in 82% of correctly detected infestations) and is most suitable for timely detection. Total symptom abundance was best explained by two site parameters (slope, Standardized Precipitation-Evapotranspiration-Index) and I. typographus population density, while it was widely independent of tree parameters and time. Though individual symptoms varied over time and among trees, patterns were clearly identified. For instance, infestations in spring were most critical to be timely detected, while increasing crown discoloration and defoliation facilitated detection in late summer and autumn. Findings further imply that hibernation trees would optimally be detected already in late summer with sanitation felling applied before November.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call