Abstract
As borders between different entities, lines are an important element of natural images. Indeed, the neurons of the mammalian visual cortex are tuned to respond best to lines of a given orientation. This preferred orientation varies continuously across most of the cortex, but also has vortex-like singularities known as pinwheels. In attempting to describe such patterns of orientation preference, we are led to consider underlying rotation symmetries: Oriented segments in natural images tend to be collinear; neurons are more likely to be connected if their preferred orientations are aligned to their topographic separation. These are indications of a reduced symmetry requiring joint rotations of both orientation preference and the underlying topography. This is verified by direct statistical tests in both natural images and in cortical maps. Using the statistics of natural scenes we construct filters that are best suited to extracting information from such images, and find qualitative similarities to mammalian vision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.