Abstract

Current-mediated downstream dispersal by the early developmental stages of fish in rivers is a common phenomenon. Knowledge of patterns and processes in the dispersal, or ‘drift’, of young fishes provides important information on spawning location and spawning success, habitat use, movement paths and flow-ecology relationships more generally, all of which are critical for effective river conservation and management. But despite the importance of such information, our understanding of the patterns and processes of the drift of the early life stages of riverine fishes is limited. Furthermore, riverine fish drift research has tended to occur in isolation from movement studies of other organisms, limiting its integration with higher level concepts and theory. This manuscript reviews the literature on the dispersal of young fishes in running waters. Relevant studies from all climatic zones and geographical regions are investigated, with particular attention given to the types and life history stages of fishes that drift and the seasonal and diel patterns of drifting. We then consider how fish enter the drift and their mode of drifting, attempting to reconcile a long-running discussion, under what we call the ‘active–passive conundrum’. We argue that, aside from eggs, the early stages of fish are not exclusively either passive or active drifters, but usually a mixture of the two, which we term ‘actipassive’ drift. Finally, we evaluate existing knowledge in the context of a general conceptual framework for movement ecology, identifying gaps in our understanding of the roles of internal state, navigation capacity, motion capacity, external factors and internal factors in influencing the dispersal process.

Highlights

  • Placing a fine-mesh net in a river in spring or early summer will usually catch the eggs, free embryos and larvae of fishes moving downstream, sometimes in vast numbers

  • We review the literature on the patterns and processes associated with the dispersal of the free embryos larvae and juveniles of riverine fishes, with the overall aim of understanding why, how and where fish drift and how drifting fish interact with the riverine environment

  • The conclusion that entry into the drift is a time-dependent behavioural decision is supported by other studies: Sonny et al (2006) ascribed the observed differences in the diurnal size range of drifting chub (Squalius cephalus) and roach (Rutilus rutilus, Cyprinidae) in the River Meuse, Belgium, to diverging dispersal strategies of both species; Pavlov (1994) watched roach larvae actively entering the flow of a hydrodynamic channel during the night; in experiments with brown trout, Roussel and Bardonnet (1999) showed that upstream movements were predominantly nocturnal, indicating that darkness might instead of inhibiting a fishs orientation, allow it the freedom to disperse

Read more

Summary

Introduction

Placing a fine-mesh net in a river in spring or early summer will usually catch the eggs, free embryos and larvae of fishes moving downstream, sometimes in vast numbers.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.