Abstract

This study was conducted to determine antibiotic susceptibility patterns among the faecal indicator bacteria (FIB), Escherichia coli and enterococci, and to determine the potential for freshwater beaches to serve as reservoirs of resistance genes where transfer of resistant phenotypes takes place or de novo resistance may evolve. One hundred and forty-seven E. coli and 150 enterococci collected from sand and water at recreational beaches along Lake Huron, Michigan, USA were screened against commonly used antibiotics. Resistance was apparent in both E. coli (19% resistant) and enterococci (65% resistant). Antibiotic-resistant E. coli were capable of growing in beach sand microcosms and were able to transfer a plasmid-encoded kanamycin-resistance gene in sand microcosms. Furthermore, resistant phenotypes were stable in the sand environment even in the absence of the corresponding antibiotic. Antibiotic-resistant FIB were prevalent and persistent in the beach habitat. Active populations of FIB at beaches express antibiotic resistance phenotypes and have the ability to transfer antibiotic resistance. These human-associated bacteria may be intermediaries in the movement of resistance between environmental and clinical reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.