Abstract
Tandem base substitutions (TBSs) are multiple mutations that comprise two or more contiguous nucleotide substitutions without any net gain or loss of bases. They have recently become recognized as a distinct category of human genomic variant. However, their role in causing human inherited disease so far has not been studied methodically. Here, using data from the Human Gene Mutation Database (http://www.hgmd.org), we identified 477 events to be TBSs (doublets, 448; triplets, 16; and quadruplets to octuplets, 13). A comprehensive sequence pattern and context analysis implied the likely fundamental importance of translesion synthesis (TLS) DNA polymerases in generating these diverse TBSs but revealed that TLS polymerases may operate differently in generating TBSs of ≤ 3 bases (bypass of endogenous DNA lesions) than those of ≥ 4 bases (serial replication slippage). Moreover, GC was found to be the most frequently affected dinucleotide with GC/GC>AA/TT being the most frequent double TBS. Comparison with cancer genome mutational spectra allowed us to conclude that human germline TBSs arise predominantly through the action of endogenous mechanisms of mutagenesis rather than through exposure to exogenous mutagens. Finally, the rates of double and triple TBSs were estimated to be 0.2-1.2 × 10(-10) and 0.8-4.8 × 10(-12) per base per generation, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.