Abstract

Dieback and mortality in wildland plant species due to climate change have been on the rise in recent decades, and latent fungal pathogens might play a significant role in these events. During a severe multiyear drought, canopy dieback associated with latent pathogens in the Botryosphaeriaceae (Bot) family was observed in stands of a dominant shrub species, big berry manzanita (Arctostaphylos glauca), across chaparral landscapes in California. These fungi are significant pathogens of woody agricultural species, especially in hosts experiencing stress, and have become a threat to economically important crops worldwide. However, little is known regarding their occurrence, distribution, and impact in wildland systems. We conducted a field survey of 300 A. glauca shrubs across an elevational gradient to identify Bot species infection as it relates to (i) A. glauca dieback severity and (ii) landscape variables associated with plant drought stress. Our results show that Bots are widely infecting A. glauca across the landscape, and there is a significant correlation between elevation and dieback severity. Dieback severity was significantly higher at lower elevations, suggesting that infected shrubs at lower elevations are at greater risk than those at higher elevations. Furthermore, two Bot species, Neofusicoccum australe and Botryosphaeria dothidea, were most frequently isolated, with N. australe being the most common and, based on haplotype analysis, likely the most recently introduced of the two. Our results confirm the wide distribution of latent Bot fungi in a wild shrubland system and provide valuable insight into areas of greatest risk for future shrub dieback and mortality. These findings could be particularly useful for informing future wildlands management strategies with regard to introduced latent pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call