Abstract

The patterning of neuronal cells and guiding neurite growth are important for neuron tissue engineering and cell-based biosensors. In this paper, inkjet printing has been employed to pattern self-assembled I3QGK peptide nanofibers on silk substrates for guiding the growth of neuron-like PC12 cells. Atomic force microscopy (AFM) confirmed the dynamic self-assembly of I3QGK into nanofiber structures. The printed self-assembled peptide strongly adheres to regenerated silk fibroin (RSF) substrates through charge-charge interactions. It was observed that in the absence of I3QGK, PC12 cells exhibited poor attachment to RSF films, while for RSF surfaces coated or printed with peptide nanofibers, cellular attachment was significantly improved in terms of both cell density and morphology. AFM results revealed that peptide nanofibers can promote the generation of axons and terminal buttons of PC12 cells, indicating that I3QGK nanofibers not only promote cellular attachment but also facilitate differentiation into neuronal phenotypes. Inkjet printing allows complex patterning of peptide nanofibers onto RSF substrates, which enabled us to engineer cell alignment and provide an opportunity to direct axonal development in vitro. The live/dead assay showed that printed I3QGK patterns exhibit no cytotoxicity to PC12 cells demonstrating potential for future nerve tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call