Abstract

Platelets play a fundamental role in thrombus formation and in the pathogenesis of arterial thrombosis. Patterning surfaces for controlled platelet adhesion paves the way for adhesion and activation mechanisms in platelets and detection of platelet functional defects. Here, a new and simple method based on controlled polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) on the surface of styrene-block-(ethylene-co-butylene)-block-styrene (SEBS) is shown. The competition between polymerization and degradation enables platelet adhesion on SEBS to be switched on and off. The adhesive sites of the platelets can be down to single cell level, and the dysfunctional platelets can be quantitatively detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.