Abstract

Here a simple low-cost yet robust route has been developed to prepare poly(dimethylsiloxane) (PDMS) microspheres with various surface wrinkle patterns. First, the aqueous-phase-synthesized PDMS microspheres are exposed to oxygen plasma (OP), yielding the oxidized SiOx layer and the corresponding stiff shell/compliant core system. The subsequent solvent swelling and solvent evaporation induce the spontaneous formation of a series of curvature and overstress-sensitive spherical wrinkles such as dimples, short rodlike depressions, and herringbone and labyrinth patterns. The effects of the experimental parameters, including the radius and Young's modulus of the microspheres, the OP exposure duration, and the nature of the solvents, on these tunable spherical wrinkles have been systematically studied. The experimental results reveal that a power-law dependence of the wrinkling wavelength on the microsphere radius exists. Furthermore, the induced wrinkling patterns are inherently characteristic of a memory effect and good reversibility. Meanwhile, the corresponding phase diagram of the wrinkle morphologies on the spherical surfaces vs the normalized radius of curvature and the excess swelling degree has been demonstrated. It is envisioned that the introduced strategy in principle could be applied to other curved surfaces for expeditious generation of well-defined wrinkle morphologies, which not only enables the fabrication of solids with multifunctional surface properties, but also provides important implications for the morphogenesis in soft materials and tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.