Abstract

Studies of cell-extracellular matrix (ECM) interactions at a single cell level have drawn interest from scientists around the world. Subcellular ECM micropatterning techniques allow researchers to control cell shape, migration, and spindle orientation during mitosis potentially influencing the stem cell fate. Generally these studies have been limited to somatic cells rather than human pluripotent stem cells (hPSCs) which are capable of enormous differentiation potential. hPSCs require a defined ECM for attachment and express characteristic integrins mediating cell-substrate interactions. hPSCs also rely on cell-cell contacts for survival and to maintain self-renewal properties, but these circumstances also significantly limit hPSC observation at a single cell level. In addition, currently available methods for ECM micropatterning generally require a facility with trained personnel and intricate equipment to produce protein micropatterns. To overcome this problem, we have developed a protocol for vitronectin micropatterning using simple UV/ozone modification of polystyrene. Single hPSCs were able to attach and form characteristic stress fibers and focal adhesions similar to somatic cell types which demonstrate hPSC responsiveness to extracellular adhesive cues. Micropatterned hPSCs were able to be cultured for up to 48 hours while maintaining expression of pluripotency-associated transcription factor OCT4. Although further studies are necessary, the results of our investigation will potentially have a large impact on cell regenerative medicine and tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.