Abstract

Efficient roll bonding for the manufacturing of clad strips not only requires surface activation but also is improved by a surface patterning to reduce the initial contact area. This increases contact stresses and facilitates a joining without an increasing rolling force. Experiments to pattern surfaces with deformable inlays during cold rolling for a subsequent bonding in low-oxygen atmosphere were carried out using two types of rolling mills, two types of inlays and two types of assemblies. Digital twins of selected experiments were created by means of the FE simulation software QForm UK 10.2.4. The main set of rolling parameters, which play a significant role during formation of the pattern shape considering deformation of the patterning tool, were investigated. The pilot roll bonding of patterned components under vacuum conditions, provided using vacuum sealer bags, allowed for an experimental realization of this approach. The concept technological chain of roll bonding in a low-oxygen or oxygen-free environment comprises the following stages: roll patterning; surface activation and sealing of the strips in a vacuum bag; subsequent roll bonding of the prepared strips inside the protective bag. The difference between the shape of the pattern created and the initial shape of the mesh insert can be quantitatively described by the change of its angle. This difference reaches maximum values when smaller rolls are used with increased rolling reductions. This maximum value is limited by the springback of the deformed insert; the limit is reached more easily if the inlay is not positioned on the rolling plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call