Abstract

The chemical and physical properties of platinum (Pt) make it a useful material for microelectromechanical systems and microfluidic applications such as lab-on-a-chip devices. Platinum thin-films are frequently employed in applications where electrodes with high chemical stability, low electrical resistance or a high melting point are needed. Due to its chemical inertness it is however also one of the most difficult metals to pattern. The gold standard for patterning is chlorine RIE etching, a capital-intensive process not available in all labs. Here we present simple fabrication protocols for wet etching Pt thin-films in hot Aqua Regia based on sputtered Ti/Pt/Cr and Cr/Pt/Cr metal multilayers. Chromium (Cr) or titanium (Ti) is used as an adhesion layer for the Pt. Cr is used as a hard masking layer during the Pt etch as it can be easily and accurately patterned with photoresist and withstands the Aqua Regia. The Cr pattern is transferred into the Pt and the Cr mask later removed. Only standard chemicals and cleanroom equipment/tools are required. Prior to the Aqua Regia etch any surface passivation on the Pt is needs to be removed. This is usually achieved by a quick dip in dilute hydrofluoric acid (HF). HF is usually also used for wet-etching the Ti adhesion layer. We avoid the use of HF for both steps by replacing the HF-dip with an argon (Ar) plasma treatment and etching the Ti layer with a hydrogen peroxide (H2O2) based etchant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call