Abstract

A pH sensitive pipeprazine substituted bipyridazine fluorophore, DPP-BPDZ was explored as a pH sensor in solution and thin film state. Greenish highly fluorescent solution of the DPP-BPDZ with fluorescence quantum yield of 0.63 showed fluorescence decrease as the acetic acid concentration of the media was increased. The fluorescence quenching was correlated linearly with the content of acetic acid dose and attributed to the protonation at the terminal piperazine group. An acid sensitive film was fabricated using a transparent polymeric host (PMMA) and the DPP-BPDZ dye molecules as a guest. The resultant bright green fluorescent film (1.4 microm thick) showed exponential decrease of the fluorescence intensity as the pH of the dipping solution was decreased. In the range of pH below 4.5, the film sensitivity to pH was higher than the pH range over 4.5. A patternable film sensor was fabricated by introducing a photo acid generator (PAG) layer on the dye layer. Fluorescence patterns was formed on the film sensor through a photo-mask by relatively weak power of UV light (0.4 mW/cm2). Fluorescent line patterns having 10 microm line width were obtained with high fluorescence contrast between the patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call