Abstract

We demonstrate a process for the fabrication of nanostructures on two types of carbon surfaces; glassy carbon (GC) and the basal surface of highly oriented pyrolytic graphite (HOPG). Using hole-mask colloidal lithography, etch masks with three different feature diameters were prepared on each of the two surface types. Oxygen reactive ion etching of different durations was then used to transfer the mask pattern onto the surfaces, yielding nanopillars with diameters ranging from ∼40 to 470 nm and heights between ∼30 and 430 nm. The structures were characterized using atomic force microscopy, scanning electron microscopy and optical spectrophotometry. Identical preparation schemes applied to the two materials yield nanostructures with remarkably different geometrical properties. In general GC structures are higher and narrower than HOPG structures prepared at the same plasma conditions. From the nanostructure dimensions and the corresponding etch times we have estimated etch rates in the forward and lateral directions to 0.19 and 0.015 nm/s for HOPG and 0.65 and 0.15 nm/s for GC. The different rates are attributed to different (an)isotropic etching behavior of the two materials in oxygen plasma. In addition, optical characterization reveals interesting changes in the surface reflectance as a result of the nanostructuring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.