Abstract

String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

Highlights

  • The perceptual and cognitive abilities necessary for everyday problem-solving such as foraging vary depending on the ecological niche of a species

  • The ability to solve patterned string tasks has been tested in numerous mammals [6,7,8] and birds [9,10,11]

  • The performance of the cockatiels showed that using the feet while feeding is not necessary to solve the vertical string-pulling problem, but that it may well determine how the task is solved

Read more

Summary

Introduction

The perceptual and cognitive abilities necessary for everyday problem-solving such as foraging vary depending on the ecological niche of a species. Comparing perceptual and cognitive abilities among species requires a paradigm that allows a broad comparison across species and is easy for a subject to understand and handle [1]. The string-pulling task and its extended versions such as patterned-string tasks fulfil the requirements of being simple and feasible while testing certain abilities such as perceptual capacity [2], means-end knowledge [3], and understanding of spatial relationships [4,5]. A patterned-string task in which the subject must choose between two or more strings, only one of which is connected to a reward, requires both perceptual and cognitive abilities as the subject has to determine the difference in the strings and understand which would lead to the reward. The ability to solve patterned string tasks has been tested in numerous mammals [6,7,8] and birds [9,10,11] (in both horizontal and vertical apparatus settings)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.