Abstract
AbstractSize variations of pattern spacing as well as gradient control of the as‐formed polymeric pattern via a spatially controlled reflow process are presented. Micro‐ and nanopatterns of polymethyl methacrylate (PMMA) in the form of line‐and‐space strips are first generated by capillary force lithography (CFL), and the residual layers are removed by ashing process. Subsequently, the exposed PMMA strips underwent a controlled reflow process above the glass transition temperature (Tg) while heating single or both sides of the substrate either in parallel to the line pattern (parallel reflow) or perpendicular to the line pattern (perpendicular reflow). As a result of this controlled reflow, a linear or a parabolic profile of pattern spacing is achieved depending on the heating mode. Furthermore, multiscale gradient patterns are formed with the spacing ranging from 98 nm to 4.23 μm (a difference of two orders of magnitude) in a single patterned layer using the original micropattern of 16 μm width and 8 μm spacing. In order to explain reflow behaviors, a simple theoretical model relating the normalized pattern width to the polymer viscosity is derived based on a leveling kinetics of polymer melt. Also, gradient PMMA channels are fabricated and bonded to a glass substrate, which are used to flow a liquid inside the channels by capillarity‐driven flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.