Abstract

In an attempt to address the growing demand for well-defined metallized regions for electronic applications, we developed a new method of forming patterned ceramics. Using UV-curing to synthesize a phosphonium-containing semi-interpenetrating polymer network (S-IPN) followed by ion exchange on the surface with a bis(phosphino)borate molybdenum tetracarbonyl complex (2Mo) results in 71% ion exchange of 2Mo to phosphonium sites by attenuated total reflectance infrared (ATR-IR) spectroscopy. The functionalized films were pyrolyzed at temperatures ranging between 800 and 1000 °C to create Mo-containing ceramics. The polymer network can be patterned using electron beam lithography prior to the metal functionalization step. The patterns had good shape retention after metal functionalization and pyrolysis. The polymer networks were characterized using ATR-IR spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, and the swellability and gel content were determined. The resulting ceramic...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call