Abstract

Liquid conductor-based flexible sensors with high mechanical deformability and reliable electrical reversibility have aroused great interest in electronic skin, soft robotics, environmental monitoring, and other fields. Herein, we develop a novel strategy to fabricate liquid conductor-based flexible sensors by combining ionic liquid-based magnetofluids (IL-MFs), magnetic printing, and photopolymerization techniques. The as-prepared sensors exhibit excellent electromechanical properties, such as a wide detection range, low hysteresis, fast response time, good durability, etc. Moreover, the gauge factors (GFs) of the sensor could be easily adjusted by changing the modulators with different line widths or patterns, and the strain sensors can also be designed for anisotropic monitoring. Apart from serving as strain sensors, the magnetofluid-based flexible sensors can be used to detect external pressure, human activities, and changes in temperature, illumination, and magnetic field as well. This work provides a facile strategy to fabricate liquid conductor-based multifunctional sensors. Such a magnetofluid-based sensor has a great promising future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.