Abstract

PurposeCommonly used technologies for visual pattern stimulation cannot operate in a magnetic resonance imaging room because they can interfere with the operation of the scanner and are vulnerable to its electromagnetic and magnetic fields. The aim of this single-center prospective observational study was to introduce a novel, structurally uncomplicated, easy-to-maintain, patterned edge-illuminated display (PEID) device for visual pattern-reversal stimulation, compare it with a commonly used cathode ray tube screen, and verify the equivalence of quantitative assays. Materials and methodsThe left and right eyes of 36 healthy participants with undilated pupils were examined on a commercial visual evoked potential (VEP) apparatus and on the PEID device, where pattern-reversal transient VEPs were elicited by checkerboard stimuli with large (0.89°; 0.86°–0.92°) and small (0.21°; 0.20°–0.23°) checks. ResultsThe PEID device demonstrated the required reliability and dynamic characteristics, as well as precise time-locking required for a VEP diagnosis. The results of Deming's correlation analysis showed that both the commercial cathode ray tube monitor and the PEID device produced identical VEP results within the context of experimental uncertainty. The standard deviation of Deming's regression may indicate the uncertainty of the VEPs measured in clinical practice. The Bland-Altman analysis of the mean showed no significant difference in the amplitude and peak time of VEPs measured on the PEID device compared to that of the commercial cathode ray tube monitor. ConclusionsThe presented PEID device meets all the required standards and can be easily installed in various types of commercial magnetic resonance imaging scanners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call