Abstract
ABSTRACTConditions for the transfer printing of patterned carbon nanotube (CNT) films, along with a Au-gate, a poly methylmethacrylate (PMMA) dielectric layer and Au source-drain electrodes have been developed for the fabrication of thin-film transistors on a polyethylene terephthalate (PET) substrate. Chemical vapor deposition (CVD) grown CNTs were patterned using a photolithographic method.Transfer printing was used to fabricate devices having both top gate and bottom gate configurations. Replacement of the SiO2 dielectric with PMMA correlates with a decreased hysteresis in the transconductance behavior. Encapsulation of the CNTs between the polymeric substrate and dielectric layer yields ambipolar behavior. Variations in device performance are also observed as a function of CNT film density and channel length, suggesting changing contributions of the metallic and semiconducting CNTs to the transport mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.